<u>PROBLEM</u>

Let
$$f: (0, \infty) \to R$$
 be given by $f(x) \int_{x}^{x} e^{-\left(t + \frac{1}{t}\right)\frac{dt}{t}}$. Then

(JEE Adv. 2014)

- (a) f(x) is monotonically increasing on $[1,\infty)$
- (b) f(x) is monotonically decreasing on (0, 1)
- (c) $f(x) + f\left(\frac{1}{x}\right) = 0$, for all $x \in (0, \infty)$
- (d) $f(2^x)$ is an odd function of x on R

SOLUTION

a, c, d)
$$f(x) = \int_{1/x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{dt}{t}$$

$$\therefore f'(x) = \frac{e^{-\left(x+\frac{1}{x}\right)}}{x} + \frac{x}{x^2} e^{-\left(\frac{1}{x}+x\right)} = \frac{2}{x} e^{-\left(x+\frac{1}{x}\right)}$$

For $x \in [1,\infty)$, $f'(x) > 0$

$$\therefore f \text{ is monotonically increasing on } [1,\infty)$$

(a) is correct.

For
$$x \in (0,1)$$
, $f'(x) > 0$
 \therefore (b) is not correct

$$f(x) + f\left(\frac{1}{x}\right) = \int_{1/x}^{x} e^{-\left(t + \frac{1}{t}\right)\frac{dt}{t}} + \int_{x}^{1/x} e^{-\left(t + \frac{1}{t}\right)\frac{dt}{t}} = 0$$

 \therefore (c) is correct.

Replacing x by $2^x \inf f(x) + f\left(\frac{1}{x}\right) = 0$

We get $f(2^x) + f(2^{-x}) = 0$ or $f(2^x) = -f(2^{-x})$

 \therefore $f(2^x)$ is an odd function.

 \therefore (d) is correct.